首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems
  • 本地全文:下载
  • 作者:D{\'a}niel Marx ; Tillmann Miltzow
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:52:1-52:16
  • DOI:10.4230/LIPIcs.SoCG.2016.52
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing segments with endpoints in S. We present an algorithm that computes the number of triangulations on a given set of n points in time n^{ (11+ o(1)) sqrt{n} }, significantly improving the previous best running time of O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in n^{O(sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more.
  • 关键词:computational geometry; triangulations; exponential-time algorithms
国家哲学社会科学文献中心版权所有