首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:On Computing the Fréchet Distance Between Surfaces
  • 本地全文:下载
  • 作者:Amir Nayyeri ; Hanzhong Xu
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:55:1-55:15
  • DOI:10.4230/LIPIcs.SoCG.2016.55
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We describe two (1+epsilon)-approximation algorithms for computing the Fréchet distance between two homeomorphic piecewise linear surfaces R and S of genus zero and total complexity n, with Frechet distance delta. (1) A 2^{O((n + ( (Area(R)+Area(S))/(epsilon.delta)^2 )^2 )} time algorithm if R and S are composed of fat triangles (triangles with angles larger than a constant). (2) An O(D/(epsilon.delta)^2) n + 2^{O(D^4/(epsilon^4.delta^2))} time algorithm if R and S are polyhedral terrains over [0,1]^2 with slope at most D. Although, the Fréchet distance between curves has been studied extensively, very little is known for surfaces. Our results are the first algorithms (both for surfaces and terrains) that are guaranteed to terminate in finite time. Our latter result, in particular, implies a linear time algorithm for terrains of constant maximum slope and constant Frechet distance.
  • 关键词:Surfaces; Terrains; Frechet distance; Parametrized complexity; normal coordinates
国家哲学社会科学文献中心版权所有