首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:The Independence of Markov's Principle in Type Theory
  • 本地全文:下载
  • 作者:Thierry Coquand ; Bassel Mannaa
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:52
  • 页码:17:1-17:18
  • DOI:10.4230/LIPIcs.FSCD.2016.17
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we show that Markov's principle is not derivable in dependent type theory with natural numbers and one universe. One tentative way to prove this would be to remark that Markov's principle does not hold in a sheaf model of type theory over Cantor space, since Markov's principle does not hold for the generic point of this model. It is however not clear how to interpret the universe in a sheaf model. Instead we design an extension of type theory, which intuitively extends type theory by the addition of a generic point of Cantor space. We then show the consistency of this extension by a normalization argument. Markov's principle does not hold in this extension, and it follows that it cannot be proved in type theory.
  • 关键词:Forcing; Dependent type theory; Markov's Principle; Cantor Space
国家哲学社会科学文献中心版权所有