首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Extension Complexity, MSO Logic, and Treewidth
  • 本地全文:下载
  • 作者:Petr Kolman ; Martin Kouteck{\'y ; Hans Raj Tiwary
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:53
  • 页码:18:1-18:14
  • DOI:10.4230/LIPIcs.SWAT.2016.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the convex hull P_phi(G) of all satisfying assignments of a given MSO_2 formula phi on a given graph G. We show that there exists an extended formulation of the polytope P_phi(G) that can be described by f(|phi|,tau)*n inequalities, where n is the number of vertices in G, tau is the treewidth of G and f is a computable function depending only on phi and tau. In other words, we prove that the extension complexity of P_phi(G) is linear in the size of the graph G, with a constant depending on the treewidth of G and the formula phi. This provides a very general yet very simple meta-theorem about the extension complexity of polytopes related to a wide class of problems and graphs.
  • 关键词:Extension Complexity; FPT; Courcelle's Theorem; MSO Logic
国家哲学社会科学文献中心版权所有