首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Approximating the Integral Fréchet Distance
  • 本地全文:下载
  • 作者:Anil Maheshwari ; J{\"o}rg-R{\"u}diger Sack ; Christian Scheffer
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:53
  • 页码:26:1-26:14
  • DOI:10.4230/LIPIcs.SWAT.2016.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present a pseudo-polynomial time (1 + epsilon)-approximation algorithm for computing the integral and average Fréchet distance between two given polygonal curves T_1 and T_2. The running time is in O(zeta^{4}n^4/epsilon^2) where n is the complexity of T_1 and T_2 and zeta is the maximal ratio of the lengths of any pair of segments from T_1 and T_2. Furthermore, we give relations between weighted shortest paths inside a single parameter cell C and the monotone free space axis of C. As a result we present a simple construction of weighted shortest paths inside a parameter cell. Additionally, such a shortest path provides an optimal solution for the partial Fréchet similarity of segments for all leash lengths. These two aspects are related to each other and are of independent interest.
  • 关键词:Fr{\'e
国家哲学社会科学文献中心版权所有