首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Space-Efficient Error Reduction for Unitary Quantum Computations
  • 本地全文:下载
  • 作者:Bill Fefferman ; Hirotada Kobayashi ; Cedric Yen-Yu Lin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:55
  • 页码:14:1-14:14
  • DOI:10.4230/LIPIcs.ICALP.2016.14
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper presents a general space-efficient method for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most 2^{-p}, the most space-efficient method known requires extra workspace of O(p*log(1/(c-s))) qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper shows an errorreduction method for unitary quantum computations (i.e., computations without intermediate measurements) that requires extra workspace of just O(log(p/(c-s))) qubits. This in particular gives the first method of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations.
  • 关键词:space-bounded computation; quantum Merlin-Arthur proof systems; error reduction; quantum computing
国家哲学社会科学文献中心版权所有