首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Approximate Hamming Distance in a Stream
  • 本地全文:下载
  • 作者:Rapha{\"e}l Clifford ; Tatiana Starikovskaya
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:55
  • 页码:20:1-20:14
  • DOI:10.4230/LIPIcs.ICALP.2016.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of computing a (1+epsilon)-approximation of the Hamming distance between a pattern of length n and successive substrings of a stream. We first look at the one-way randomised communication complexity of this problem. We show the following: - If Alice and Bob both share the pattern and Alice has the first half of the stream and Bob the second half, then there is an O(epsilon^{-4}*log^2(n)) bit randomised one-way communication protocol. - If Alice has the pattern, Bob the first half of the stream and Charlie the second half, then there is an O(epsilon^{-2}*sqrt(n)*log(n)) bit randomised one-way communication protocol. We then go on to develop small space streaming algorithms for (1 + epsilon)-approximate Hamming distance which give worst case running time guarantees per arriving symbol. - For binary input alphabets there is an O(epsilon^{-3}*sqrt(n)*log^2(n)) space and O(epsilon^{-2}*log(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm. - For general input alphabets there is an O(epsilon^{-5}*sqrt(n)*log^4(n)) space and O(epsilon^{-4}*log^3(n)) time streaming (1 + epsilon)-approximate Hamming distance algorithm.
  • 关键词:Hamming distance; communication complexity; data stream model
国家哲学社会科学文献中心版权所有