首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Optimization Algorithms for Faster Computational Geometry
  • 本地全文:下载
  • 作者:Zeyuan Allen-Zhu ; Zhenyu Liao ; Yang Yuan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:55
  • 页码:53:1-53:6
  • DOI:10.4230/LIPIcs.ICALP.2016.53
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study two fundamental problems in computational geometry: finding the maximum inscribed ball (MaxIB) inside a bounded polyhedron defined by m hyperplanes, and the minimum enclosing ball (MinEB) of a set of n points, both in d-dimensional space. We improve the running time of iterative algorithms on MaxIB from ~O(m*d*alpha^3/epsilon^3) to ~O(m*d + m*sqrt(d)*alpha/epsilon), a speed-up up to ~O(sqrt(d)*alpha^2/epsilon^2), and MinEB from ~O(n*d/sqrt(epsilon)) to ~O(n*d + n*sqrt(d)/sqrt(epsilon)), a speed-up up to ~O(sqrt(d)). Our improvements are based on a novel saddle-point optimization framework. We propose a new algorithm L1L2SPSolver for solving a class of regularized saddle-point problems, and apply a randomized Hadamard space rotation which is a technique borrowed from compressive sensing. Interestingly, the motivation of using Hadamard rotation solely comes from our optimization view but not the original geometry problem: indeed, it is not immediately clear why MaxIB or MinEB, as a geometric problem, should be easier to solve if we rotate the space by a unitary matrix. We hope that our optimization perspective sheds lights on solving other geometric problems as well.
  • 关键词:maximum inscribed balls; minimum enclosing balls; approximation algorithms
国家哲学社会科学文献中心版权所有