摘要:For n >= 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous graph with exactly those finite graphs as induced subgraphs that do not embed the complete graph on n vertices. We show that for all structures Gamma with domain Hn whose relations are first-order definable in (Hn, E) the constraint satisfaction problem for Gamma is either in P or is NP-complete. We moreover show a similar complexity dichotomy for all structures whose relations are first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation. Together with earlier results, in particular for the random graph, this completes the complexity classification of constraint satisfaction problems of structures first-order definable in countably infinite homogeneous graphs: all such problems are either in P or NP-complete.
关键词:Constraint Satisfaction; Homogeneous Graphs; Computational Complexity; Universal Algebra; Ramsey Theory