首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:New Algorithms, Better Bounds, and a Novel Model for Online Stochastic Matching
  • 本地全文:下载
  • 作者:Brian Brubach ; Karthik Abinav Sankararaman ; Aravind Srinivasan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:57
  • 页码:24:1-24:16
  • DOI:10.4230/LIPIcs.ESA.2016.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Online matching has received significant attention over the last 15 years due to its close connection to Internet advertising. As the seminal work of Karp, Vazirani, and Vazirani has an optimal (1 - 1/epsilon) competitive ratio in the standard adversarial online model, much effort has gone into developing useful online models that incorporate some stochasticity in the arrival process. One such popular model is the "known I.I.D. model" where different customer-types arrive online from a known distribution. We develop algorithms with improved competitive ratios for some basic variants of this model with integral arrival rates, including: (a) the case of general weighted edges, where we improve the best-known ratio of 0.667 due to [Haeupler, Mirrokni and Zadimoghaddam WINE 2011] to 0.705; and (b) the vertex-weighted case, where we improve the 0.7250 ratio of [Jaillet and Lu Math. Oper. Res 2013] to 0.7299. We also consider two extensions, one is "known I.I.D." with non-integral arrival rate and stochastic rewards; the other is "known I.I.D." b-matching with non-integral arrival rate and stochastic rewards. We present a simple non-adaptive algorithm which works well simultaneously on the two extensions. One of the key ingredients of our improvement is the following (offline) approach to bipartite-matching polytopes with additional constraints. We first add several valid constraints in order to get a good fractional solution f; however, these give us less control over the structure of f. We next remove all these additional constraints and randomly move from f to a feasible point on the matching polytope with all coordinates being from the set {0, 1/k, 2/k,..., 1} for a chosen integer k. The structure of this solution is inspired by [Jaillet and Lu Math. Oper. Res 2013] and is a tractable structure for algorithm design and analysis. The appropriate random move preserves many of the removed constraints (approximately [exactly] with high probability [in expectation]). This underlies some of our improvements, and, we hope, could be of independent interest.
  • 关键词:Ad-Allocation; Online Matching; Randomized Algorithms
国家哲学社会科学文献中心版权所有