首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Optimal Staged Self-Assembly of General Shapes
  • 本地全文:下载
  • 作者:Cameron Chalk ; Eric Martinez ; Robert Schweller
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:57
  • 页码:26:1-26:17
  • DOI:10.4230/LIPIcs.ESA.2016.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We analyze the number of stages, tiles, and bins needed to construct n * n squares and scaled shapes in the staged tile assembly model. In particular, we prove that there exists a staged system with b bins and t tile types assembling an n * n square using O((log n - tb - t log t)/b^2 + log log b/log t) stages and Omega((log n - tb - t log t)/b^2) are necessary for almost all n. For a shape S, we prove O((K(S) - tb - t log t)/b^2 + (log log b)/log t) stages suffice and Omega((K(S) - tb - t log t)/b^2) are necessary for the assembly of a scaled version of S, where K(S) denotes the Kolmogorov complexity of S. Similarly tight bounds are also obtained when more powerful flexible glue functions are permitted. These are the first staged results that hold for all choices of b and t and generalize prior results. The upper bound constructions use a new technique for efficiently converting each both sources of system complexity, namely the tile types and mixing graph, into a "bit string" assembly.
  • 关键词:Tile self-assembly; 2HAM; aTAM; DNA computing; biocomputing
国家哲学社会科学文献中心版权所有