摘要:We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [Kasteleyn 1961], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [Jerrum 1987]. To interpolate between matchings and perfect matchings, we study the parameterized problem of counting matchings with k unmatched vertices in a planar graph G, on input G and k. This setting has a natural interpretation in statistical physics, and it is a special case of counting perfect matchings in k-apex graphs (graphs that become planar after removing k vertices). Starting from a recent #W[1]-hardness proof for counting perfect matchings on k-apex graphs [Curtican and Xia 2015], we obtain: - Counting matchings with k unmatched vertices in planar graphs is #W[1]-hard. - In contrast, given a plane graph G with s distinguished faces, there is an O(2^s n^3) time algorithm for counting those matchings with k unmatched vertices such that all unmatched vertices lie on the distinguished faces. This implies an f(k,s)n^O(1) time algorithm for counting perfect matchings in k-apex graphs whose apex neighborhood is covered by s faces.