首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Approximation and Hardness of Token Swapping
  • 本地全文:下载
  • 作者:Tillmann Miltzow ; Lothar Narins ; Yoshio Okamoto
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:57
  • 页码:66:1-66:15
  • DOI:10.4230/LIPIcs.ESA.2016.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a graph G=(V,E) with V={1,...,n}, we place on every vertex a token T_1,...,T_n. A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of finding a shortest sequence of swaps such that token T_i is on vertex i. We are able to achieve essentially matching upper and lower bounds, for exact algorithms and approximation algorithms. For exact algorithms, we rule out any 2^{o(n)} algorithm under the ETH. This is matched with a simple 2^{O(n*log(n))} algorithm based on a breadth-first search in an auxiliary graph. We show one general 4-approximation and show APX-hardness. Thus, there is a small constant delta > 1 such that every polynomial time approximation algorithm has approximation factor at least delta. Our results also hold for a generalized version, where tokens and vertices are colored. In this generalized version each token must go to a vertex with the same color.
  • 关键词:token swapping; minimum generator sequence; graph theory; NP-hardness; approximation algorithms
国家哲学社会科学文献中心版权所有