摘要:We study the version of the k-disjoint paths problem where k demand pairs (s_1,t_1), ..., (s_k,t_k) are specified in the input and the paths in the solution are allowed to intersect, but such that no vertex is on more than c paths. We show that on directed acyclic graphs the problem is solvable in time n^{O(d)} if we allow congestion k-d for k paths. Furthermore, we show that, under a suitable complexity theoretic assumption, the problem cannot be solved in time f(k)n^{o(d*log(d))} for any computable function f.