首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:Complexity of Constraint Satisfaction Problems over Finite Subsets of Natural Numbers
  • 本地全文:下载
  • 作者:Titus Dose
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:58
  • 页码:32:1-32:13
  • DOI:10.4230/LIPIcs.MFCS.2016.32
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the computational complexity of constraint satisfaction problems that are based on integer expressions and algebraic circuits. On input of a finite set of variables and a finite set of constraints the question is whether the variables can be mapped onto finite subsets of N (resp., finite intervals over N) such that all constraints are satisfied. According to the operations allowed in the constraints, the complexity varies over a wide range of complexity classes such as L, P, NP, PSPACE, NEXP, and even Sigma_1, the class of c.e. languages.
  • 关键词:computational complexity; constraint satisfaction problems; integer expressions and circuits
国家哲学社会科学文献中心版权所有