首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the Complexity Landscape of Connected f-Factor Problems
  • 本地全文:下载
  • 作者:Robert Ganian ; N. S. Narayanaswamy ; Sebastian Ordyniak
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:58
  • 页码:41:1-41:14
  • DOI:10.4230/LIPIcs.MFCS.2016.41
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon 1, the problem is NP-intermediate.
  • 关键词:f-factors; connected f-factors; quasi-polynomial time algorithms; randomized algorithms
国家哲学社会科学文献中心版权所有