首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Algebraic Problems Equivalent to Beating Exponent 3/2 for Polynomial Factorization over Finite Fields
  • 本地全文:下载
  • 作者:Zeyu Guo ; Anand Kumar Narayanan ; Chris Umans
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:58
  • 页码:47:1-47:14
  • DOI:10.4230/LIPIcs.MFCS.2016.47
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The fastest known algorithm for factoring univariate polynomials over finite fields is the Kedlaya-Umans (fast modular composition) implementation of the Kaltofen-Shoup algorithm. It is randomized and takes ~O(n^{3/2}*log(q)+n*log^2(q)) time to factor polynomials of degree n over the finite field F_q with q elements. A significant open problem is if the 3/2 exponent can be improved. We study a collection of algebraic problems and establish a web of reductions between them. A consequence is that an algorithm for any one of these problems with exponent better than 3/2 would yield an algorithm for polynomial factorization with exponent better than 3/2.
  • 关键词:algorithms; complexity; finite fields; polynomials; factorization
国家哲学社会科学文献中心版权所有