首页    期刊浏览 2025年07月24日 星期四
登录注册

文章基本信息

  • 标题:On the Exact Learnability of Graph Parameters: The Case of Partition Functions
  • 本地全文:下载
  • 作者:Nadia Labai ; Johann A. Makowsky
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:58
  • 页码:63:1-63:13
  • DOI:10.4230/LIPIcs.MFCS.2016.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the exact learnability of real valued graph parameters f which are known to be representable as partition functions which count the number of weighted homomorphisms into a graph H with vertex weights alpha and edge weights beta. M. Freedman, L. Lovasz and A. Schrijver have given a characterization of these graph parameters in terms of the k-connection matrices C(f,k) of f. Our model of learnability is based on D. Angluin's model of exact learning using membership and equivalence queries. Given such a graph parameter f, the learner can ask for the values of f for graphs of their choice, and they can formulate hypotheses in terms of the connection matrices C(f,k) of f. The teacher can accept the hypothesis as correct, or provide a counterexample consisting of a graph. Our main result shows that in this scenario, a very large class of partition functions, the rigid partition functions, can be learned in time polynomial in the size of H and the size of the largest counterexample in the Blum-Shub-Smale model of computation over the reals with unit cost.
  • 关键词:exact learning; partition function; weighted homomorphism; connection matrices
国家哲学社会科学文献中心版权所有