首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Descriptive Complexity of #AC^0 Functions
  • 本地全文:下载
  • 作者:Arnaud Durand ; Anselm Haak ; Juha Kontinen
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:62
  • 页码:20:1-20:16
  • DOI:10.4230/LIPIcs.CSL.2016.20
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC^0 appear as classes of this hierarchy. In this way, we unconditionally place #AC^0 properly in a strict hierarchy of arithmetic classes within #P. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. We argue that our approach is better suited to study arithmetic circuit classes such as #AC^0 which can be descriptively characterized as a class in our framework.
  • 关键词:finite model theory; Fagin's theorem; arithmetic circuits; counting classes; Skolem function
国家哲学社会科学文献中心版权所有