首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:LP-Relaxations for Tree Augmentation
  • 本地全文:下载
  • 作者:Guy Kortsarz ; Zeev Nutov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:60
  • 页码:13:1-13:16
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2016.13
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the Tree Augmentation Problem (TAP) the goal is to augment a tree T by a minimum size edge set F from a given edge set E such that T+F is 2-edge-connected. The best approximation ratio known for TAP is 1.5. In the more general Weighted TAP problem, F should be of minimum weight. Weighted TAP admits several 2-approximation algorithms w.r.t. the standard cut-LP relaxation. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 2 is not known. Improving this "natural" ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 2, which is an old open problem even for TAP. In this paper we introduce two different LP-relaxations, and for each of them give a simple algorithm that computes a feasible solution for TAP of size at most 7/4 times the optimal LP value. This gives some hope to break the ratio 2 for the weighted case.
  • 关键词:Tree Augmentation; LP-relaxation; Laminar family; Approximation algorithms
国家哲学社会科学文献中心版权所有