首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Bi-Criteria Approximation Algorithm for k-Means
  • 本地全文:下载
  • 作者:Konstantin Makarychev ; Yury Makarychev ; Maxim Sviridenko
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:60
  • 页码:14:1-14:20
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2016.14
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the classical k-means clustering problem in the setting of bi-criteria approximation, in which an algorithm is allowed to output beta*k > k clusters, and must produce a clustering with cost at most alpha times the to the cost of the optimal set of k clusters. We argue that this approach is natural in many settings, for which the exact number of clusters is a priori unknown, or unimportant up to a constant factor. We give new bi-criteria approximation algorithms, based on linear programming and local search, respectively, which attain a guarantee alpha(beta) depending on the number beta*k of clusters that may be opened. Our guarantee alpha(beta) is always at most 9 + epsilon and improves rapidly with beta (for example: alpha(2) < 2.59, and alpha(3) < 1.4). Moreover, our algorithms have only polynomial dependence on the dimension of the input data, and so are applicable in high-dimensional settings.
  • 关键词:k-means clustering; bicriteria approximation algorithms; linear programming; local search
国家哲学社会科学文献中心版权所有