首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching
  • 本地全文:下载
  • 作者:Sharath Raghvendra
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:60
  • 页码:18:1-18:16
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2016.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the Online Minimum Metric Bipartite Matching Problem. In this problem, we are given point sets S and R which correspond to the server and request locations; here |S|=|R|=n. All these locations are points from some metric space and the cost of matching a server to a request is given by the distance between their locations in this space. In this problem, the request points arrive one at a time. When a request arrives, we must immediately and irrevocably match it to a "free" server. The matching obtained after all the requests are processed is the online matching M. The cost of M is the sum of the cost of its edges. The performance of any online algorithm is the worst-case ratio of the cost of its online solution M to the minimum-cost matching. We present a deterministic online algorithm for this problem. Our algorithm is the first to simultaneously achieve optimal performances in the well-known adversarial and the random arrival models. For the adversarial model, we obtain a competitive ratio of 2n-1 + o(1); it is known that no deterministic algorithm can do better than 2n-1. In the random arrival model, our algorithm obtains a competitive ratio of 2H_n - 1 + o(1); where H_n is the n-th Harmonic number. We also prove that any online algorithm will have a competitive ratio of at least 2H_n - 1-o(1) in this model. We use a new variation of the offline primal-dual method for computing minimum cost matching to compute the online matching. Our primal-dual method is based on a relaxed linear-program. Under metric costs, this specific relaxation helps us relate the cost of the online matching with the offline matching leading to its robust properties.
  • 关键词:Online Algorithms; Metric Bipartite Matching
国家哲学社会科学文献中心版权所有