首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Bounds on the Norms of Uniform Low Degree Graph Matrices
  • 本地全文:下载
  • 作者:Dhruv Medarametla ; Aaron Potechin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:60
  • 页码:40:1-40:26
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2016.40
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinatorial optimization problems. However, its performance is only partially understood. Improving our understanding of the sum of squares hierarchy is a major open problem in computational complexity theory. A key component of analyzing the sum of squares hierarchy is understanding the behavior of certain matrices whose entries are random but not independent. For these matrices, there is a random input graph and each entry of the matrix is a low degree function of the edges of this input graph. Moreoever, these matrices are generally invariant (as a function of the input graph) when we permute the vertices of the input graph. In this paper, we bound the norms of all such matrices up to a polylogarithmic factor.
  • 关键词:sum of squares hierarchy; matrix norm bounds
国家哲学社会科学文献中心版权所有