首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Approximating Smallest Containers for Packing Three-Dimensional Convex Objects
  • 本地全文:下载
  • 作者:Helmut Alt ; Nadja Scharf
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:64
  • 页码:11:1-11:14
  • DOI:10.4230/LIPIcs.ISAAC.2016.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate the problem of computing a minimum-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for packing cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimum volume containers for the objects described.
  • 关键词:computational geometry; packing; approximation algorithm
国家哲学社会科学文献中心版权所有