首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Optimal Composition Ordering Problems for Piecewise Linear Functions
  • 本地全文:下载
  • 作者:Yasushi Kawase ; Kazuhisa Makino ; Kento Seimi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:64
  • 页码:42:1-42:13
  • DOI:10.4230/LIPIcs.ISAAC.2016.42
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we introduce maximum composition ordering problems. The input is n real functions f_1 , ... , f_n : R to R and a constant c in R. We consider two settings: total and partial compositions. The maximum total composition ordering problem is to compute a permutation sigma : [n] to [n] which maximizes f_{sigma(n)} circ f_{sigma(n-1)} circ ... circ f_{sigma(1)}(c), where [n] = {1, ... , n}. The maximum partial composition ordering problem is to compute a permutation sigma : [n] to [n] and a nonnegative integer k (0 le k le n) which maximize f_{sigma(k)} circ f_{sigma(k-1)} circ ... circ f_{sigma(1)}(c). We propose O(n log n) time algorithms for the maximum total and partial composition ordering problems for monotone linear functions f_i , which generalize linear deterioration and shortening models for the time-dependent scheduling problem. We also show that the maximum partial composition ordering problem can be solved in polynomial time if f i is of the form max{a_i x + b_i , c_i } for some constants a_i (ge 0), b_i and c_i. As a corollary, we show that the two-valued free-order secretary problem can be solved in polynomial time. We finally prove that there exists no constant-factor approximation algorithm for the problems, even if f_i's are monotone, piecewise linear functions with at most two pieces, unless P=NP.
  • 关键词:function composition; time-dependent scheduling
国家哲学社会科学文献中心版权所有