首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A Linear-Time Algorithm for Integral Multiterminal Flows in Trees
  • 本地全文:下载
  • 作者:Mingyu Xiao ; Hiroshi Nagamochi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:64
  • 页码:62:1-62:12
  • DOI:10.4230/LIPIcs.ISAAC.2016.62
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we study the problem of finding an integral multiflow which maximizes the sum of flow values between every two terminals in an undirected tree with a nonnegative integer edge capacity and a set of terminals. In general, it is known that the flow value of an integral multiflow is bounded by the cut value of a cut-system which consists of disjoint subsets each of which contains exactly one terminal or has an odd cut value, and there exists a pair of an integral multiflow and a cut-system whose flow value and cut value are equal; i.e., a pair of a maximum integral multiflow and a minimum cut. In this paper, we propose an O(n)-time algorithm that finds such a pair of an integral multiflow and a cut-system in a given tree instance with n vertices. This improves the best previous results by a factor of Omega(n). Regarding a given tree in an instance as a rooted tree, we define O(n) rooted tree instances taking each vertex as a root, and establish a recursive formula on maximum integral multiflow values of these instances to design a dynamic programming that computes the maximum integral multiflow values of all O(n) rooted instances in linear time. We can prove that the algorithm implicitly maintains a cut-system so that not only a maximum integral multiflow but also a minimum cut-system can be constructed in linear time for any rooted instance whenever it is necessary. The resulting algorithm is rather compact and succinct.
  • 关键词:Multiterminal flow; Maximum flow; Minimum Cut; Trees; Linear-time algorithms
国家哲学社会科学文献中心版权所有