摘要:This paper describes qualitative spatial representations relevant to cartoon motion incorporated into NarrativeML, an annotation scheme intended to capture some of the core aspects of narrative. These representations are motivated by linguistic distinctions drawn from cross-linguistic studies. Motion is modeled in terms of transitions in spatial configurations, using an expressive dynamic logic with the manner and path of motion being derived from a few basic primitives. The manner is elaborated to represent properties of motion that bear on character affect. Such representations can potentially be used to support cartoon narrative summarization and question-answering. The paper discusses annotation challenges, and the use of computer vision to help in annotation. Work is underway on annotating a cartoon corpus in terms of this scheme.