首页    期刊浏览 2025年09月14日 星期日
登录注册

文章基本信息

  • 标题:Comparing Extant Story Classifiers: Results & New Directions
  • 本地全文:下载
  • 作者:Joshua D. Eisenberg ; W. Victor H. Yarlott ; Mark A. Finlayson
  • 期刊名称:OASIcs : OpenAccess Series in Informatics
  • 电子版ISSN:2190-6807
  • 出版年度:2016
  • 卷号:53
  • 页码:1-10
  • DOI:10.4230/OASIcs.CMN.2016.6
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data - including stories - are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.
  • 关键词:Story Detection; Machine Learning; Natural Language Processing; Perceptron Learning
国家哲学社会科学文献中心版权所有