首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:An automatic Clustering Method based on Maximum Distance
  • 本地全文:下载
  • 作者:Hongbo Zhou ; Yongqiang Feng ; Juntao Gao
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2015
  • 卷号:15
  • 期号:4
  • 页码:40-43
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:Traditional k-means clustering algorithm needs to determine cluster number and select initial cluster centers in advance,considering the shortcomings of k-means algorithm,the paper proposed an improved efficient clustering algorithm.The algorithm does not require pre-determined number of clusters and initial cluster centers,select cluster centers according to the principle of maximum distance,divide cluster according to the principle of minimum distance,and determine the optimal cluster partition according to the distance evaluation function.The improved algorithm avoids the choice of the value of cluster number and initial centers.Hence this method can produce more accurate clustering results than the standard k-means algorithm.Experimental results show that the improved algorithm has good performance and high time efficiency.
  • 关键词:Euclidean distance; cluster center; maximum distance principle; minimum distance principle; distance evaluation function
国家哲学社会科学文献中心版权所有