首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Artificial neural networks in forecasting maximum and minimum relative humidity
  • 本地全文:下载
  • 作者:Amanpreet Kaur ; J K Sharma ; Sunil Agrawal
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2011
  • 卷号:11
  • 期号:5
  • 页码:197-199
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:In this paper, the application of neural networks to study the maximum and minimum relative humidity for Chandigarh city is explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model forecasting system is used and Back Propagation algorithm is used to train the network. The proposed network is trained with actual data of the past 10 years (2000-2010) and tested which comes from meteorological department. The results show that the maximum and minimum relative humidity can be predicted more accurately by using the artificial neural network.
  • 关键词:Artificial neural network; Multi-layer perceptron; Back Propagation
国家哲学社会科学文献中心版权所有