首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Scatter-PCA for Visual Clustering of Spatio-Temporal Data
  • 本地全文:下载
  • 作者:Aina Musdholifah ; Siti Zaiton Mohd Hashim
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2014
  • 卷号:14
  • 期号:1
  • 页码:72-76
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:In order to verify the clustering results, domain experts usually require it to be represented in interpretable and meaningful ways. For that reason, the spatio-temporal clusters obtained are essentially needed to be visualized in an understandable view to support visual exploration of cluster structures. Scatter-Principal Component Analysis (Scatter-PCA) is proposed to visualize the spatio-temporal clustering result. Scatter-PCA combines PCA that projected m-dimensional spatio-temporal data into 2 dimensional spatio-temporal data with scatter plot to visualize the structure of clusters. Two spatio-temporal data: crime data and traffic accident data are utilized to validate the visual clustering approach. The experimental results on two clustering result of spatio-temporal data demonstrate the effectiveness of our visual clustering approach to investigate the structure of clusters.
  • 关键词:Cluster; visualization; interpretation; principal component analysis; scatter plot
国家哲学社会科学文献中心版权所有