首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Application of Modified General Regression Model to Cluster Protein Sequences
  • 作者:G Lavanya Devi ; Allam Appa Rao ; A Damodaram
  • 期刊名称:International Journal of Computer Science and Network Security
  • 印刷版ISSN:1738-7906
  • 出版年度:2008
  • 卷号:8
  • 期号:4
  • 页码:225-231
  • 出版社:International Journal of Computer Science and Network Security
  • 摘要:Cluster analysis is the study of techniques for finding the most representative cluster prototypes. Linear relation of two sequences can be modeled perfectly through the classical linear regression model. Protein sequence clustering has many applications such as helps in classifying a new sequence, predicting the protein structure of unknown sequence and finding the family and subfamily relationships of protein sequences. To cluster a repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we have proposed a new technique named General Regression Model Technique (GRMT1) to test the linearity of the sequences. Later we have applied General Regression Model Technique Clustering Algorithm (GRMTCA) to cluster the protein sequences. The performance of the algorithm was evaluated with 50 protein sequences. We used BLAST to annotate the clusters obtained by GRMTCA. It is observed that the clusters have biological significance.
  • 关键词:Clustering; BLAST; General Regression Model; Protein Sequences
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有