期刊名称:International Journal of Advanced Computer Research
印刷版ISSN:2249-7277
电子版ISSN:2277-7970
出版年度:2013
卷号:3
期号:10
页码:101-107
出版社:Association of Computer Communication Education for National Triumph (ACCENT)
摘要:Collaborative filtering Recommender system plays a very demanding and significance role in this era of internet information and of course e commerce age. Collaborative filtering predicts user preferences from past user behaviour or user-item relationships. Though it has many advantages it also has some limitations such as sparsity, scalability, accuracy, cold start problem etc. In this paper we proposed a method that helps in reducing sparsity to enhance recommendation accuracy. We developed fuzzy inference rules which is easily to implement and also gives better result. A comparison experiment is also performing with two previous methods, Traditional Collaborative Filtering (TCF) and Hybrid User Model Technique (HUMCF).