期刊名称:International Journal of Computer Networks (IJCN)
电子版ISSN:1985-4129
出版年度:2014
卷号:6
期号:6
页码:108-117
出版社:Computer Science Journals
摘要:The optical networks provide the backbone infrastructure for telecommunication networks. Because of the high-speed of optical networks, network failure such as a cable cut or node failure may result in a tremendous loss of data and hence revenue received. The p-cycle is a novel approach reported for design of survivable optical WDM networks. They are preconfigured protection structure, combining fast restoration speed of ring and mesh protection efficiency. The main issue in p-cycle network design is to find a set of p-cycles to protect a given working capacity distribution so that total spare capacity used by the p-cycles is minimized. An Integer Linear Programming (ILP) is the most efficient method reported in the literature for designing of optimal p-cycles. Where complexity of ILP increases as the size of network increases, i.e., it is not so efficient in case of large networks. Recently, a new, promising concept to support dynamic demand environments has been introduced by Grover namely, the distributed cycle pre- configuration (DCPC) protocol, which is an adaptation of the processing rule of the self-healing network (SHN). However, it is generally unable to provide 100% protection of the working capacity under Spare Capacity Optimization (SCO) design model. Therefore in this paper we have proposed enhancements in DCPC to increase its protection level under single failure scenario. The main idea behind the proposed enhancement is it to fix the span as a straddle span of a p-cycle where unprotected working capacity is more. From the simulation of test case networks, it is found that the proposed scheme significantly increases ratio of protection under the SCO design model.
关键词:WDM; p-cycle; Integer Linear Programming (ILP); Distributed Cycle Pre- Configuration (DCPC) and Spare Capacity Optimization (SCO).