首页    期刊浏览 2025年06月10日 星期二
登录注册

文章基本信息

  • 标题:PSO-BASED DBSCAN WITH OBSTACLE CONSTRAINTS
  • 本地全文:下载
  • 作者:XIAONING FENG ,ZHUO WANG ; GUISHENG YIN,YING WANG
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2012
  • 卷号:46
  • 期号:1
  • 页码:377-383
  • 出版社:Journal of Theoretical and Applied
  • 摘要:This paper presents a new PSO-based optimization DBSCAN space clustering algorithm with obstacle constraints. The algorithm introduces obstacle model and simplifies two-dimensional coordinates of the cluster object coding to one-dimensional, then uses the PSO algorithm to obtain the shortest path and minimum obstacle distance. At the last stage, this paper fulfills spatial clustering based on obstacle distance. Theoretical analysis and experimental results show that the algorithm can get high-quality clustering result of space constraints with more reasonable and accurate quality.
  • 关键词:Space Clustering; Obstacle Constraints ; Particle Swarm Optimization Algorithm; DBSCAN
国家哲学社会科学文献中心版权所有