首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A CONCEPTUAL FRAMEWORK FOR APPROACHING PREDICTIVE MODELING USING MULTIVARIATE REGRESSION ANALYSIS VS ARTIFICIAL NEURAL NETWORK
  • 本地全文:下载
  • 作者:VIDYULLATHA PELLAKURI ; D RAJESWARA RAO ; P LAKSHMI PRASANNA
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2015
  • 卷号:77
  • 期号:2
  • 出版社:Journal of Theoretical and Applied
  • 摘要:The use of artificial neural networks is a promising approach for prediction of fine particles concentrations under variable meteorological conditions. This paper analyzes the statistical analysis of Multivariate Regression Analysis (MVRA) versus Artificial Neural Networks (ANN) and investigations were performed on real statistical data set obtained from measurements of the process parameters of recent six months data under industrial conditions. Most influential statistical parameters such as R, R-square, Adjusted R-square, MAE, RMSE are evaluated for choosing right modeling tool in this investigation.
  • 关键词:Artificial Neural Network; Back Propagation; Levenberg-Marquardt Algorithm; Meteorological Parameters; Multivariate Regression Analysis; Nntool
国家哲学社会科学文献中心版权所有