首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A NOVEL RANK BASED CO-LOCATION PATTERN MINING APPROACH USING MAP-REDUCE
  • 本地全文:下载
  • 作者:M.SHESHIKALA ; D. RAJESWARA RAO ; R.VIJAYA PRAKASH
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2016
  • 卷号:87
  • 期号:3
  • 出版社:Journal of Theoretical and Applied
  • 摘要:With the increase in spatial data analysis, the co-location patterns and its dependencies are used to discover the complex patterns on spatial databases. Most of the traditional spatial data mining techniques have been implemented based on the assumption that the data is meaningful and clean. It is essential to study the data integration issues along with spatial co-locating patterns. Generally, spatial co-location mining algorithms are used to discover the spatial objects and its dependencies among them. As the data size increases, the co-location objects and its patterns are difficult to process on complex spatial objects. In this paper, an optimized spatial co-locating pattern mining framework was developed to discover the highly ranked correlated patterns using the hadoop framework. This MapReduce model was used to minimize computational time and space on complex spatial databases. Finally, the experimental results on the complex spatial data are evaluated using the proposed framework and the traditional hadoop based pattern mining models.
  • 关键词:Spatial Dataset; Co-Location Models; Association Rules; Prevalence Threshold; Mapreduce
国家哲学社会科学文献中心版权所有