期刊名称:Journal of Theoretical and Applied Information Technology
印刷版ISSN:1992-8645
电子版ISSN:1817-3195
出版年度:2016
卷号:88
期号:3
出版社:Journal of Theoretical and Applied
摘要:Retinal blood vessel Extraction in retinal images allows early diagnosis of disease and is useful in detecting ocular disorders and helps in laser surgery. Automating this process provides several benefits including minimizing subjectivity and eliminating a painstaking. This paper proposes an automated retinal blood vessel segmentation approach based on Fuzzy C-Means (FCM) clustering and then performed extraction using Artificial Bee-colony (ABC) to improve the accuracy of segmented image. FCM allocate the values of membership to the pixels instead of separating the pixels as in hard clustering problem and the clustering is optimized using ABC swarm based optimization algorithm, finally the system classify the images according to the level of damage in blood vessel using support vector machine (SVM). The performance was evaluated on DRIVE database and an accuracy of 96.35% was obtained.
关键词:Fundus Camera; Clustering; Fuzzy C-Means; Artificial Bee-Colony; Support Vector Machine.