首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Potential of aquacultural sludge treatment for aquaponics: evaluation of nutrient mobilization under aerobic and anaerobic conditions
  • 本地全文:下载
  • 作者:Hendrik Monsees ; Jonas Keitel ; Maurice Paul
  • 期刊名称:Aquaculture Environment Interactions
  • 印刷版ISSN:1869-215X
  • 电子版ISSN:1869-7534
  • 出版年度:2017
  • 卷号:9
  • 页码:9-18
  • 出版社:Inter-Research
  • 摘要:In recirculating aquaculture systems (RAS), mechanical removal of suspended solids by clarifiers or drum filters provides an organic mixture rich in nutrients. Still, in most traditional RAS, this sludge is discharged directly or following dewatering. Here, the potential recycling of nutrients from sludge is assessed, comparing aerobic and anaerobic mobilization of nutrients experimentally, ultimately aiming at an application in aquaponic systems. Nutrient mobilization processes were studied, monitoring soluble nutrients photometrically in the treatment tanks (NO3--N, NO2--N, total ammonia nitrogen, soluble reactive phosphorus [SRP], K+, Mg2+ and Fe2+), the nutrient composition of the sludge (total phosphorus, Fe, Mn, Al, S, Mg, Ca) by inductively coupled plasma optical emission spectrometry, as well as C:N ratio, total solids (TS) and total suspended solids (TSS). Aerobic treatment (aerated, AT) resulted in a 3.2-fold increase in mean (±SD) SRP from 9.4 (± 0.7) to 29.7 (± 2.1) mg l-1, most likely owing to a decrease in pH. In contrast, in the anaerobic treatment (unaerated, UT), SRP remained unchanged between 9.4 (± 0.7) and 9.3 (± 0.4) mg l-1. Both treatments resulted in increased K+ concentrations from 28.1 (± 1.5) to 36.8 (± 2.3) mg l-1 in AT and to 32.2 (± 2.3) mg l-1 in UT. AT revealed best mobilization of P and K+ without major losses of NO3--N. Thus, aerobic treatment of water-sludge mixture has a high potential for significant improvements of nutrient recycling in aquaponics.
  • 关键词:Aquaponics ; Phosphate recovery ; Nitrate ; Sludge ; Aerobic ; Anaerobic ; Nutrient recycling
国家哲学社会科学文献中心版权所有