期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:46
页码:E7337-E7345
DOI:10.1073/pnas.1611211113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThis study provides direct evidence supporting the model of reward-auditory cortex interaction as underlying musical pleasure: People who do not experience that pleasure have selectively reduced responses in that system. People who are especially sensitive to musical reward conversely seem to show an enhanced interaction. Our paper offers insights into the neurobiological basis of music-induced pleasure that could also provide the basis for thinking more broadly about other types of aesthetic rewards. Our results also provide an important step toward the understanding of how music may have acquired reward value through evolution. Although music is ubiquitous in human societies, there are some people for whom music holds no reward value despite normal perceptual ability and preserved reward-related responses in other domains. The study of these individuals with specific musical anhedonia may be crucial to understand better the neural correlates underlying musical reward. Previous neuroimaging studies have shown that musically induced pleasure may arise from the interaction between auditory cortical networks and mesolimbic reward networks. If such interaction is critical for music-induced pleasure to emerge, then those individuals who do not experience it should show alterations in the cortical-mesolimbic response. In the current study, we addressed this question using fMRI in three groups of 15 participants, each with different sensitivity to music reward. We demonstrate that the music anhedonic participants showed selective reduction of activity for music in the nucleus accumbens (NAcc), but normal activation levels for a monetary gambling task. Furthermore, this group also exhibited decreased functional connectivity between the right auditory cortex and ventral striatum (including the NAcc). In contrast, individuals with greater than average response to music showed enhanced connectivity between these structures. Thus, our results suggest that specific musical anhedonia may be associated with a reduction in the interplay between the auditory cortex and the subcortical reward network, indicating a pivotal role of this interaction for the enjoyment of music.