首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy
  • 本地全文:下载
  • 作者:Boyi Liu ; Yan Tai ; Satyanarayana Achanta
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:47
  • 页码:E7572-E7579
  • DOI:10.1073/pnas.1606608113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceIn the United States, the most common cause of allergic contact dermatitis (ACD) is contact with poison ivy. Severe itch and skin inflammation are the major manifestations of poison ivy-induced ACD. In this study, we have established a critical role of IL-33/ST2 (interleukin 33/growth stimulation expressed gene 2) signaling in both itch and skin inflammation of poison ivy-induced ACD and revealed a previously unidentified interaction of IL-33/ST2 signaling with primary sensory neurons that may underlie the pruritic mechanisms of poison ivy-induced ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy dermatitis and, possibly, other chronic itch conditions in which IL-33/ST2 signaling may participate. Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO2. Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.
  • 关键词:itch ; pain ; cytokine ; IL-33 ; allergic contact dermatitis
国家哲学社会科学文献中心版权所有