期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:50
页码:E8011-E8020
DOI:10.1073/pnas.1609374113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceIn this work, we investigate the role of defects on the electronic and photocatalytic properties of In2O3-x(OH)y nanoparticles that have been shown to effectively reduce CO2 to CO via the reverse water-gas shift reaction under light. To understand how such defects affect photogenerated electrons and holes in these materials, we studied the relaxation dynamics of these nanoparticles with varying concentration of defects. This analysis showed that higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation and correlate well with the observed trends in the photocatalytic activity. In2O3-x(OH)y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO2 to CO via the reverse water-gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In2O3-x(OH)y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play a significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO2 reduction.
关键词:indium oxide ; solar fuels ; CO2 hydrogenation ; transient absorption ; surface defects