期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:50
页码:14249-14254
DOI:10.1073/pnas.1609132113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceThe magnitude and timing of Antarctic temperature change through the last deglaciation reveal key aspects of Earths climate system. Prior attempts to reconstruct this history relied on isotopic indicators without absolute calibration. To overcome this limitation, we combined isotopic data with measurements of in situ temperatures along a 3.4-km-deep borehole. Deglacial warming in Antarctica was two to three times larger than the contemporaneous global temperature change, quantifying the extent to which feedback processes amplify global changes in polar regions, a key prediction of climate models. Warming progressed earlier in Antarctica than in the Northern Hemisphere but coincident with glacier recession in southern mountain ranges, a manifestation of changing oceanic heat transport, insolation, and atmospheric CO2 that can further test models. The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earths climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was [IMG]f1.gif" ALT="Formula" BORDER="0">C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.
关键词:climate ; paleoclimate ; Antarctica ; glaciology ; temperature