首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation
  • 本地全文:下载
  • 作者:Kyu-Tae Lee ; Yuan Yao ; Junwen He
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:51
  • 页码:E8210-E8218
  • DOI:10.1073/pnas.1617391113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceConcentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to electricity. The performance is intrinsically limited, however, by an inability to capture diffuse illumination, due to narrow acceptance angles of the concentrator optics. Here we demonstrate concepts where flat-plate solar cells mount onto the backplanes of the most sophisticated CPV modules to yield an additive contribution to the overall output. Outdoor testing results with two different hybrid module designs demonstrate absolute gains in average daily efficiencies of between 1.02% and 8.45% depending on weather conditions. The findings suggest pathways to significant improvements in the efficiencies, with economics that could potentially expand their deployment to a wide range of geographic locations. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886{degrees} N (Durham, NC), 40.1125{degrees} N (Bondville, IL), and 38.9072{degrees} N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
  • 关键词:photovoltaics ; multijunction solar cells ; concentration optics ; diffuse light capture
国家哲学社会科学文献中心版权所有