期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2017
卷号:8
期号:1
DOI:10.14569/IJACSA.2017.080111
出版社:Science and Information Society (SAI)
摘要:This paper presents a new monolithic microwave integrated circuit (MMIC) based on coplanar waveguide (CPW) design for a tunable resonator based on RF MEMS. This RF structure, which can be used for system on chip (SOC), is constituted with MEMS Bridge placed between two meander inductors and the tenability is controlled by a variable applied DC voltage. Moreover, this device presents a compactness characteristic and the possibility to operate at high frequencies. The resonant frequency and the bandwidth can be changed easily by changing the bridge gap of the RF MEMS. The numerical simulations of this novel structure of a tunable RF MEMS resonator were performed with the electromagnetic solvers CST MWS (Computer simulation Technology Microwave Studio) and validated by the more accurate electromagnetic solver HFSS (High Frequency Structural Simulator). The simulation results, for three different spacing of the bridge gap, show that the tunable frequency band are between 10 and 40 GHz with the two electromagnetic solvers and exhibiting three resonant frequencies (21, 23.1 and 24.6 GHz).The simulation results of the return loss using CST achieves 29 dB with an insertion loss less than 1 dB; However, the HFSS simulation shows similar performance in the resonant frequencies and in the bandwidth giving better results in terms of the return loss (about 35dB instead of 29 dB) and showing a good adaptation.