首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Automatic Fall Detection using Smartphone Acceleration Sensor
  • 本地全文:下载
  • 作者:Tran Tri Dang ; Hai Truong ; Tran Khanh Dang
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:12
  • DOI:10.14569/IJACSA.2016.071216
  • 出版社:Science and Information Society (SAI)
  • 摘要:In this paper, we describe our work on developing an automatic fall detection technique using smart phone. Fall is detected based on analyzing acceleration patterns generated during various activities. An additional long lie detection algorithm is used to improve fall detection rate while keeping false positive rate at an acceptable value. An application prototype is implemented on Android operating system and is used to evaluate the proposed technique performance. Experiment results show the potential of using this app for fall detection. However, more realistic experiment setting is needed to make this technique suitable for use in real life situations.
  • 关键词:thesai; IJACSA Volume 7 Issue 12; fall detection; long lie detection; acceleration sensor; smartphone; personal healthcare
国家哲学社会科学文献中心版权所有