首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Statistical Implicative Similarity Measures for User-based Collaborative Filtering Recommender System
  • 本地全文:下载
  • 作者:Nghia Quoc Phan ; Phuong Hoai Dang ; Hiep Xuan Huynh
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2016
  • 卷号:7
  • 期号:11
  • DOI:10.14569/IJACSA.2016.071118
  • 出版社:Science and Information Society (SAI)
  • 摘要:This paper proposes a new similarity measures for User-based collaborative filtering recommender system. The similarity measures for two users are based on the Implication intensity measures. It is called statistical implicative similarity measures (SIS). This similarity measures is applied to build the experimental framework for User-based collaborative filtering recommender model. The experiments on MovieLense dataset show that the model using our similarity measures has fairly accurate results compared with User-based collaborative filtering model using traditional similarity measures as Pearson correlation, Cosine similarity, and Jaccard.
  • 关键词:thesai; IJACSA Volume 7 Issue 11; Similarity measures; Implication intensity; User-based collaborative filtering recommender system; statistical implicative similarity measures
国家哲学社会科学文献中心版权所有