首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Two way Algorithm Method for Mining of Frequent Itemsets Using MapReduce
  • 本地全文:下载
  • 作者:B Revathi Lavanya MIAENG ; N Sameera ; J.Malathi
  • 期刊名称:International Journal of Computer Science and Information Technologies
  • 电子版ISSN:0975-9646
  • 出版年度:2016
  • 卷号:7
  • 期号:6
  • 页码:2491-2498
  • 出版社:TechScience Publications
  • 摘要:Existing mining algorithms for frequent itemsetslack a mechanism that enables automatic parallelization, loadbalancing, data distribution, and fault tolerance on largeclusters. As a solution to this problem, we design a two stepalgorithm method for mining of frequent itsemsets using theMapReduce programming model. To achieve minimum runningtime for the corresponding minimum support, FP growthalgorithm is used. This paper incorporates the mining offrequent items using FP trees. Also three MapReduce jobs areimplemented to complete the mining task. In the crucial thirdMapReduce job, the mappers independently decomposeitemsets, the reducers perform combination operations. Tooptimize the mining process and to measure load balance acrossthe cluster’s computing nodes FiDoop-HD, an extension ofFiDoop is used, to speed up the mining performance for highdimensionaldata analysis. Extensive experiments using realworldcelestial spectral data demonstrate that our proposedsolution is efficient and scalable
  • 关键词:Frequent itemsets; minimum support;frequent;items FP tree; Hadoop cluster; load balance; MapReduce.
国家哲学社会科学文献中心版权所有