摘要:The metric in the quasi-hyperbolic plane is induced by an absolute figure F_{QH} = {F; f_1; f_2}, consisting of two real lines f_1 and f_2 incident with the real point F. A curve of class n is circular in the quasi-hyperbolic plane if it contains at least one absolute line. The curves of the 3rd class can be obtained by projective mapping, i.e. obtained by projectively linked pencil of curves of the 2nd class and range of points. In this article we show that the circular curves of the 3rd class of all types, depending on their position to the absolute gure, can be constructed with projective mapping.
关键词:projectivity; circular curve of the 3rd class; quasi-hyperbolic plane