首页    期刊浏览 2025年05月25日 星期日
登录注册

文章基本信息

  • 标题:コミックの内容情報に基づいた探索的な情報アクセスの支援
  • 本地全文:下载
  • 作者:山下 諒 ; 朴 炳宣 ; 松下 光範
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2017
  • 卷号:32
  • 期号:1
  • 页码:WII-D_1-11
  • DOI:10.1527/tjsai.WII-D
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:

    The purpose of this research is supporting information access based on the contents of comic books. To meet this purpose, it is necessary to obtain information related to the story and the characters of a comic. We propose a method to extract information from reviews on the Web by using term frequency-inversed document frequency (TFIDF) method and hierarchical Latent Dirichlet Allocation (hLDA) method, which intends to solve the problem. By using these methods, we build a prototype system for exploratory comic search. We conducted a user study to observe how a participant use the system. The user study showed that the system successfully supported the participants to find interesting unread comics.

  • 关键词:comic computing;exploratory search;hLDA;TF-IDF;review analysis
国家哲学社会科学文献中心版权所有